skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Panaiotu, Cristian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Unmixing of remanent magnetization curves, either isothermal remanent magnetization (IRM) or backfield IRM, is widely used in rock magnetic and environmental magnetic studies to discriminate between magnetic coercivity components of different origins. However, the wide range of physical properties of natural magnetic particles gives rise to an ambiguous interpretation of these components. To reduce this ambiguity and provide a straightforward interpretation of coercivity components in terms of domain state, interactions, and constituent magnetic phases, we combined backfield IRM unmixing with unmixing of nonlinear Preisach maps for two typical mid‐latitude northern hemisphere loess‐paleosol sequences. Both backfield IRM and nonlinear Preisach maps unmixing are based on the same non‐parametric algorithm, and provide similar endmembers (EMs) in the two sections studied. The first EM (EM1) has a low median coercivity (∼21 mT) and is a non‐interacting single domain (SD) magnetite/maghemite of pedogenic origin. The second EM (EM2) has a moderate median coercivity (∼60 mT) and is a mixture of pseudo‐single domain/multidomain, SD magnetite/maghemite and non‐interacting SD hematite, all of eolian origin. The same EM1 found in both sections suggests that this component's grain size and coercivity are independent of pedogenesis intensity. The same EM2 indicates that a similar magnetic population is being transported and deposited, irrespective of the dust source area and loess granulometry. The approach outlined here provides strong evidence that non‐parametric backfield IRM unmixing isolates physically realistic EMs. Unmixing nonlinear Preisach maps elucidates these EMs in terms of domain states and their constituent magnetic phases. 
    more » « less